A-16

Solvation Structure and Dynamics of Room-temperature Ionic Liquids

Raluca Musat¹, Robert A. Crowell¹, Dmitriy Polyanskiy¹, Andrew Cook¹, James Wishart¹, Marie Thomas¹, Yuelin Li², and Dohn Arms²

Room-temperature ionic liquids have emerged as a new class of solvents that have several potential applications due to their unique properties (e.g., low volatility, large electrochemical window, high conductivity, etc.). One of their more exciting possibilities is their potential use in nuclear fuel reprocessing for the next generation of nuclear reactors. The selectivity of a given imidazolium ionic liquid depends strongly on the choice of the counter anion. In this contribution we will present new results using both static and time-resolved extended x-ray absorption fine structure (approx. 1-ns resolution) on a series of bromide-containing imidazolium salts. The static results provide detailed information of the solvation shell of the bromide ion and the time-resolved data shed light on the nature and chemical behavior of the lowest lying charge transfer band.

¹Department of Chemistry, Brookhaven National Laboratory, P.O. Box 5000 Upton, NY, 11973

²Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439